(版本:V2.0)

执行标准: Q/HTC01-2017

1 概述

CYX12 系列注油芯体压力传感器选用国际先进的高稳定、高精度硅压力芯片,采用应力优化设计的烧结座,通过贴片、金丝键合、膜片焊接、高真空注油、压力循环去应力、高温老炼、温度补偿等工艺生产。产品具有极好的稳定性和优良的性能。

小型化的外形尺寸为满足用户整机小尺寸而设计。应用于与 316L 不锈钢及丁腈橡胶或氟橡胶 相兼容介质的压力检测。

2 产品特点

- 測量范围 OkPa~600kPa…100MPa
- 具有表压 G、绝压 A 和密封表压 S 形式
- 恒流供电
- 隔离式结构,适用于多种流体介质
- Φ12.6mm 压力注油芯体
- 全 316L 不锈钢材质
- 钽膜片可定制

3 主要用途

● 工业过程控制

油井监测

● 气体、液体压力测量

● 压力检测校准仪表

● 压力开关及液压系统

● 消防物联网

4 技术指标

4.1 电气性能

● 供电电源: ≤3.0mA

● 电气连接: 0.2mm²四色 100mm 硅橡胶软导线

● 共模电压输出:电流型输入的 50%(典型值)

● 输入阻抗: 2.7kΩ~5kΩ

● 输出阻抗: 3.0kΩ~6kΩ

● 响应时间(10%~90%): <1ms

MILA TIAN

天水华天传感器有限公司

执行标准: Q/HTC01-2017

● 绝缘电阻: 500MΩ/100V DC

● 允许过压: 1.5 倍满量程

4.2 结构性能

(版本:V2.0)

● 膜片材质:不锈钢 316L

● 売体材质: 不锈钢 316L

● 管脚引线:镀金柯伐

● 密封圈: 丁腈橡胶、氟橡胶(可选)

● 净重量: 约 10g

4.3 环境条件

● 振动: 在 10gRMS, (20~2000) Hz 条件下无变化

● 恒定加速度: 100g, 11ms

● 介质兼容性: 316L 和丁腈橡胶(可选氟橡胶)的液体或气体

4.4 基准条件

● 介质温度: (25±3) °C

● 环境温度: (25±3) °C

● 湿 度: (50%±10%) RH

● 环境压力: (86~106) kPa

● 电 源: (1.5±0.0015) mA DC

4.5 标准量程灵敏度输出及可选压力形式

量程	满量程 输出(mV)	典型值	压力 形式	量程	满量程 输出(mV)	典型值	压力 形式
0∼600kPa	90~120	100	G/A	0∼10MPa	180~230	200	S/A
0∼1.0MPa	80~120	100	G/A	0∼25MPa	140~170	150	S/A
0∼1.6MPa	125~185	150	G/A	0~40MPa	230~280	250	S/A
0~2.0MPa	50~70	60	G/A	0∼60MPa	100~160	130	S/A
0∼3.5MPa	100~120	110	G/S/A	0~100MPa	100~150	120	S/A
0∼7.0MPa	120~150	135	S/A				

天水华天传感器有限公司

执行标准: Q/HTC01-2017

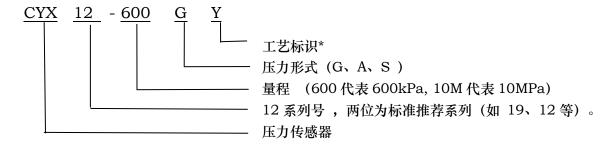
4.6 基本参数

(版本:V2.0)

参 数	典型值	最大值	单 位
满量程输出	100	250	mV
零位输出	±1	±2	mV
非 线 性	0.2	0.5	%FS
迟 滞	0.05	0.08	%FS
重复性	0.05	0.08	%FS
输入/输出阻抗	2.6	5.0	kΩ
零点温漂	±0.4	±1.0	%FS,@25℃
灵敏度温漂	±0.4	±1.0	%FS, @25℃
长期稳定性	0.2	0.3	%FS/年
激励电流	1.5(输入电压	mA	
绝缘电阻	500 (10	$\mathbf{M} \Omega$	
补偿温度	-10℃	${\mathbb C}$	
工作温度	-40~	${\mathbb C}$	
存储温度	-40~	${\mathbb C}$	
响应时间	\(\left\)	ms	
外壳和膜片材料	316L 2		
O型密封圈	氟橡胶、丁腈		
测量介质	与 316L、丁腈橡胶或氟		
寿命 (25℃)	>1×108 压力?	次	
填充介质	硅油		
密封圈	Ф10×1.3mm (Ţ		

注 1: 氟橡胶密封圈耐温度范围是-20℃~200℃,低温性能较差,当温度范围低于-20℃, 请 谨慎选用。

天水华天传感器有限公司



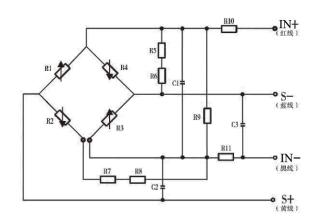
5 选型结构

5.1 芯体选型型号及外形图

系 列	量 程	型号	外 形 图	
	600kPa∼10MPa	CYX1201	2.5 2.5 2.7 2.2 10	
CYX12	25MPa~100MPa	CYX1202	2.5 AXXXXXX 010 0.09	

5.2 选型指南

*工艺标识: f表示通用工艺, Y表示负压工艺。



天水华天传感器有限公司

(版本:V2.0) 执行标准: Q/HTC01-2017

6 原理图及接线方式

IN+(红线)-供电正 IN-(黑线)-供电负 S+(黄线)-输出正 S-(蓝线)-输出负

7 应用提示

- 压力芯体的密封方式推荐选用侧壁 O 型圈的"悬浮式"密封结构,避免前端面压紧,防止影响压力芯体的稳定性。
- 注意保护压力芯体前膜片和后端的补偿电路板,以免碰伤影响压力芯体的性能或造成芯体损坏。
- 外壳芯体腔应设计成锥形角,容易芯体装配,可防止直角划伤密封圈。
- 装配时注意芯体尺寸与变送器外壳內壳的公差配合,建议腔体按芯体直径的+0.02~+0.05 加工,以达到所要求的气密性。
- 装配时要垂直放正,均匀用力下压,以防卡壳或压坏补偿片。
- 禁用手或坚硬物按压金属膜片,避免因芯片变形或穿孔而导致芯体损坏。
- 接线时芯体管脚不宜剪得太短,长度一般不小于 5mm,焊接时间不大于 5 秒。
- G 型芯体后部通气管要保持与大气相通;禁止水、水汽或腐蚀性介质进入芯体后部的参考腔。
- 避免跌落摔碰等,会影响产品稳定性。
- 管脚引线若有变化,以芯体实物携带标签为准。

天水华天传感器有限公司