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SUMMARY

Synaptotagmins Syt1, Syt2, Syt7, and Syt9 act as
Ca2+-sensors for synaptic and neuroendocrine
exocytosis, but the function of other synaptotagmins
remains unknown. Here, we show that olfactory bulb
neurons secrete IGF-1 by an activity-dependent
pathway of exocytosis, and that Syt10 functions as
the Ca2+-sensor that triggers IGF-1 exocytosis in
these neurons. Deletion of Syt10 impaired activity-
dependent IGF-1 secretion in olfactory bulb neurons,
resulting in smaller neurons and an overall decrease
in synapse numbers. Exogenous IGF-1 completely
reversed the Syt10 knockout phenotype. Syt10 colo-
calized with IGF-1 in somatodendritic vesicles of
olfactory bulb neurons, and Ca2+-binding to Syt10
caused these vesicles to undergo exocytosis,
thereby secreting IGF-1. Thus, Syt10 controls a previ-
ously unrecognized pathway of Ca2+-dependent
exocytosis that is spatially and temporally distinct
from Ca2+-dependent synaptic vesicle exocytosis
controlled by Syt1. Our findings thereby reveal that
two different synaptotagmins can regulate function-
ally distinct Ca2+-dependent membrane fusion reac-
tions in the same neuron.
INTRODUCTION

Studies spanning two decades have identified synaptotagmin-1

(Syt1) and three of its close homologs, Syt2, Syt7, and Syt9, as

Ca2+-sensors for fast synaptic and neuroendocrine exocytosis

(reviewed in Gustavsson and Han, 2009). Synaptotagmins are

vesicle proteins composed of a short N-terminal intravesicular

sequence followed by a single transmembrane region, a linker

sequence, and two C-terminal C2-domains that bind Ca2+ in

some but not all synaptotagmins. Ca2+ induces binding of the

two Syt1 C2-domains to phospholipid membranes and to
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assembled SNARE-complexes; both actions contribute to trig-

gering exocytosis (Fernandez-Chacon et al., 2001; Pang et al.,

2006).

However, in addition to the well-characterized exocytotic

Ca2+-sensors Syt1, Syt2, Syt7 and Syt9, mammals express

four other Ca2+-binding synaptotagmins whose function

remains unknown (Syt3, Syt5, Syt6, and Syt10). Strikingly,

Syt3, Syt5, Syt6, and Syt10 constitute a separate class of syn-

aptotagmins with homologous N-terminal cysteine residues that

form disulfide bonds, thereby dimerizing these synaptotagmins

(Fukuda et al., 1999). Syt3, Syt5, Syt6, and Syt10 exhibit similar

Ca2+-dependent phospholipid- and SNARE-binding properties

as Syt1, although with a higher apparent Ca2+-affinity (Li

et al., 1995a and 1995b; Sugita et al., 2002), form a tight

complex with assembled SNARE complexes in a manner remi-

niscent of Syt1 (Vrljic et al., 2010), and promote Ca2+-depen-

dent liposome fusion in vitro (Bhalla et al., 2008). The properties

of Syt3, Syt5, Syt6, and/or Syt10 suggest that they act as Ca2+-

sensors for some form of exocytosis, possibly asynchronous

neurotransmitter release (Li et al., 1995b), but no loss-of-func-

tion experiments to probe their biological roles have been

reported.

In brain, Syt3, Syt5, Syt6, and Syt10 are primarily, maybe

exclusively, expressed in neurons (Mittelstaedt et al., 2009).

Syt3 and Syt5 are widely distributed, whereas Syt6 is primarily

expressed in layer 5 pyramidal neurons of the cortex, and

Syt10 in olfactory bulb neurons (Mittelstaedt et al., 2009). Inter-

estingly, expression of Syt10 but not of Syt3, Sy5, or Syt6 is

induced in cortex by seizures (Babity et al., 1997). In the present

study, we have systematically examined the function of Syt10,

chosen because of its localization to the olfactory bulb, using

a genetic approach. Surprisingly, our data show that Syt10 func-

tions as a Ca2+-sensor for the exocytotic secretion of IGF-1 con-

taining vesicles, and that this role is specific for Syt10, whereas

Syt1 acts as a separate Ca2+-sensor for exocytosis of synaptic

vesicles in the same neurons. Our data define an unanticipated

Ca2+-dependent secretory pathway in neurons that coexists

with the standard synaptotagmin-dependent synaptic and

neuroendocrine pathways of exocytosis; thus, different synapto-

tagmins can in the same cell control distinct Ca2+-triggered
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Figure 1. Syt10 KO Impairs Food-Finding Behavior and Decreases

Olfactory Bulb Synapse Numbers

(A) Schematic diagramof the generation of conditional and constitutive Syt10KO

mice. Positions of selected restriction enzymes and of coding exon 2 (E2) as well

as of frt (orange ovals) and loxP recombination sites (yellow triangles) are indi-

cated (NEO, neomycin resistance cassette; DT, diphtheria toxin). Note that the

mutagenesisschemegeneratesbothconditionalandconstitutiveSyt10KOmice.

(B) Constitutive Syt10 KO mice exhibit impaired food-finding behaviors.

Summary graph showsmean time (±SEM) required for littermate wild-type and

Syt10 KOmice to find a buried cookie. For survival and weight measurements,

see Figures S1A and S1B.
exocytosis reactions that operate without overlap, but by similar

mechanisms.

RESULTS

Syt10 KO Impairs Food-Finding Behaviors and
Decreases Olfactory Bulb Synapse Numbers
We produced constitutive and conditional Syt10 KO mice by

homologous recombination in embryonic stem cells (Figure 1A).

Constitutive Syt10 KO mice were viable and fertile (Figures S1A

and S1B). Since Syt10 is expressed at highest levels in the olfac-

tory bulb (Mittelstaedt et al., 2009), we examined whether dele-

tion of Syt-10 impairs olfaction. When compared to wild-type

littermate controls, Syt10 KO mice exhibited a significant

increase in the time required to find hidden food, suggesting

that their olfactory function is decreased (Figure 1B).

We next studied the olfactory bulb of Syt10 KO mice anatom-

ically. We found no change in overall gross morphology (Fig-

ure 1C) and no alteration in the density of mitral and granule

cell neurons (Figures S1C and S1D). However, measurements

of the staining intensity for synapsin, a general synaptic marker

(Südhof et al., 1989), revealed that the synapsin signal was

decreased in the external plexiform layer (EPL), but not the olfac-

tory glomeruli (Figures 1C and 1D and Figure S1E). To investigate

this further, we measured the overall density of excitatory and

inhibitory synapses in the EPL using antibodies to the vesicular

glutamate transporter (vGlut1) and to glutamic acid decarboxy-

lase-65 (GAD65), respectively (Figures 1E and 1F and Figures

S1F–S1I). Both markers revealed a significant reduction of stain-

ing intensity over the EPL but not the olfactory glomeruli, sug-

gesting that the Syt10 KO decreases the overall density of

synapses in the EPL.

Syt10KO Impairs Synaptic Transmission in theOlfactory
Bulb as Measured by Acute Slice Physiology
Most synapses in the EPL are reciprocal dendrodendritic

synapses between excitatory mitral cell neurons and inhibitory

granule cell neurons (Isaacson and Strowbridge, 1998; Schoppa

et al., 1998; Chen and Shepherd, 1997). Their overall function

can be monitored in acute olfactory bulb slices by stimulating

extracellularly in the granule cell layer, and recording in whole-

cell mode from mitral neurons (Chen and Shepherd, 1997;
(C and D) Representative image (C) and summary graphs of the overall staining

intensity (D) of olfactory bulbs from littermate wild-type and constitutive Syt10

KO mice labeled by indirect immunofluorescence for the presynaptic protein

synapsin. Note the decrease in synapsin staining in the external plexiform layer

(EPL) but not the glomerular layer of Syt10 KO mice (scale bar = 0.4 mm).

(E and F) Representative images (left panels) and summary graphs of the

staining intensity in the EPL (right panels) of olfactory bulbs from littermate

wild-type and Syt10 KO mice analyzed by labeling for the excitatory presyn-

aptic protein vGlut1 (E) and the inhibitory presynaptic protein GAD65 (F). The

EPL was analyzed because it is the major synaptic layer in olfactory bulb that

contains the reciprocal mitral/granule cell synapses. Note that measurements

of neuronal densities and synapse densities in the glomerular layer found no

change (Figures S1E–S1I). Scale bars represent 50 mm.

All summary graphs showmeans ± SEMs; number of sections/number of mice

are shown in individual bars. Statistical analyses were performed by Student’s

t test comparing KO with wild-type samples (**p < 0.01). See also Table S1.
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Figure 2. Syt10 KO Impairs Synaptic Transmission as Analyzed in Acute Olfactory Bulb Slices

(A) Recording strategy. Whole-cell recordings were performed in mitral neurons; inhibitory postsynaptic currents (IPSCs) were triggered by stimulation (80 mA for

1 s) with an extracellular concentric bipolar electrode in the granule cell layer to antidromically activate mitral neurons. IPSCs are dependent on retrograde action

potentials in mitral neurons that trigger reciprocal excitatory postsynaptic currents (EPSCs) and IPSCs in dendro-dendritic synapses in the external plexiform

layer (EPL), as shown by the sensitivity of responses to both the GABA-receptor blocker picrotoxin (PTX) and the glutamate receptor blockers D-APV and CNQX

(bottom). EPSCs are not visible in the mitral cell recordings because excitatory synapses are only formed on granule cells, not between mitral cells. For opti-

mization of the location of stimulus electrodes, see Figure S2A (ONL, olfactory nerve layer; GL, glomerular layer; MCL, mitral cell layer; GCL, granule cell layer).

(B) Representative traces (left), frequency (middle) and amplitude (right) of spontaneous ‘mini’ mIPSCs recorded in 1 mM tetrodotoxin (TTX), 20 mM CNQX, and

50 mM D-APV.

(C) Input/output curves of evoked IPSCs (for sample traces, see Figure S2B).

(D) Representative traces (left) and synaptic charge transfer during the initial 100 ms (middle) and total train (right) of evoked IPSCs elicited by a 10 Hz stimulus

train at 80 mA applied for 1 s.

(E) Analysis of delayed release during the 10 Hz 1 s stimulus train as the delayed charge transfer (left) and the ratio of delayed to total charge transfer (right).

(F) Capacitance (left) and input resistance (right) of mitral cells in olfactory bulb slices from wild-type and Syt10 KO mice.

All summary graphs show means ± SEMs; number of recordings/slices/animals analyzed are shown in individual bars. Statistical analyses were performed by

Student’s t test comparing mitral cell neurons in Syt10 KO and littermate wild-type control slices (** = p < 0.01), except for the input/output cure which was

analyzed by 2-way ANOVA (F = 12.84). See also Table S1.
Figure 2A). Retrograde action potentials in mitral neurons trigger

excitation of granule neuron dendrites, which then elicit inhibi-

tory GABAergic postsynaptic currents (IPSCs) that can be moni-

tored in the mitral neurons. Optimization experiments revealed

that these events are best induced by stimulating close to the

mitral cell layer (Figure S2A). The nature of the IPSCs thus
302 Cell 145, 300–311, April 15, 2011 ª2011 Elsevier Inc.
observed was validated by the demonstration that they are

blocked both by inhibitors of inhibitory and of excitatory trans-

mission (Figure 2A).

In mitral cells from Syt10 KOmice the frequency but not ampli-

tude of spontaneous mIPSCs was decreased �40% compared

to littermate wild-type controls (Figure 2B). Input/output



curves uncovered a significant decrease in synaptic strength

(Figures 2C and S2B). IPSCs measured during a 10 Hz stimulus

train applied for 1 s were uniformly decreased �70%; this

decrease was equally observed for the first response and for

delayed release, a form of asynchronous release (Maximov and

Südhof, 2005), suggesting that the synaptic change consisted in

an overall decrease in synaptic transmission capacity, not in an

impairment of a particular type of release (Figures 2D and 2E).

Moreover, total neuronal cell capacitance was decreased �30%,

whereas the input resistance was increased �75%, indicating

that Syt10 KO neurons are smaller and electrically ‘tighter’

(Figure 2F).
Syt10 KO Decreases Excitatory and Inhibitory Synaptic
Responses in Cultured Olfactory Bulb Neurons
Our electrophysiological experiments in acute slices suggest

that deletion of Syt10 impairs synaptic transmission in the olfac-

tory bulb, but do not reveal whether excitatory and/or inhibitory

synapses are affected. To measure synaptic transmission

more directly, we examined cultured olfactory bulb neurons

from conditional (floxed) Syt10 KO mice. Neurons were infected

with lentiviruses expressing inactive cre recombinase (as

a control), or active cre recombinase (to induce acute deletion

of Syt10; Figure 1A; Ho et al., 2006). In this manner, we analyzed

identical populations of neurons that only differ in the expression

of inactive versus active cre recombinase. Moreover, we addi-

tionally examined Syt1 KO neurons to test whether Syt1 and

Syt10 perform similar functions (Figure 3).

Inspection of cultured olfactory bulb neurons identified two

predominant types of neurons, large (�27 mm diameter) and

small neurons (�12 mm diameter). As shown below, these

neurons likely represent mitral/tufted neurons and granule cells,

respectively, with the latter also including other, less abundant

types of interneurons (Trombley and Westbrook [1990]). In the

following, we recorded IPSCs and EPSCs from presumptive

mitral neurons, and additionally EPSCs from granule neurons.

The phenotype produced by the acute deletion of Syt10 was

identical for excitatory and inhibitory synaptic transmission in

both types of neurons, as far measured: spontaneous ‘mini’

frequencies were decreased 30%–50% without a change in

mini amplitude, the amplitudes of responses triggered by action

potentials were decreased �40%, and release induced by

hypertonic sucrose (Rosenmund and Stevens, 1996) was low-

ered by �50% (Figures 3A-3L). Thus, the Syt10 KO uniformly

causes a loss of overall synaptic strength in excitatory and inhib-

itory synapses in mitral and granule cell neurons.

Direct comparisons of the Syt10 KO phenotype with that of the

Syt1 KO, analyzed in parallel in the same preparation, revealed

that the two synaptotagmin KOs caused completely different

effects. Specifically, whereas the Syt10 KO decreased the mini

mIPSC frequency in mitral neurons �50%, the Syt1 KO

increased it �300% (Figures 3I and 3J); whereas the Syt10 KO

decreased the amplitude of evoked IPSCs �40%, the Syt1 KO

decreased it > 90% (Figure 3K); and finally, whereas the Syt10

KO decreased synaptic transmission induced by hypertonic

sucrose �50%, the Syt1 KO had no effect on this type of

synaptic response (Figure 3L). These results show that Syt10 op-
erates in a different pathway or by a different mechanism than

Syt1.

Syt10 KODecreases the Size and Dendritic Arborization
of Olfactory Bulb Neurons, but Not the Synapse
Density per Dendritic Length
The physiological phenotype of Syt10 KO neurons could be ex-

plained by a uniform decrease in the strength of all synapses, or

by a decrease in synapse numbers. Moreover, the slice record-

ings revealed that the Syt10 KO caused a significant decrease in

capacitance and increase in input resistance in mitral neurons

(Figure 2F). Strikingly, we observed the same effect of the

Syt10 KO in cultured mitral and granule cell neurons, whereas

in parallel experiments the Syt1 KO produced no change in these

parameters (Figures 4A and 4B). These results suggest that the

Syt10 KO phenotype may be due, at least in part, to a decrease

in neuronal size.

To test this hypothesis, we stained cultured olfactory bulb

neurons with vGlut1 antibodies and measured the sizes of the

cell bodies of excitatory vGlut1-positive neurons (presumably

primarily mitral cells), and of inhibitory vGlut1-negative neurons

(presumably primarily granule cells). These measurements

confirmed that the excitatory neurons were twice as large as

inhibitory neurons (Figures 4C and 4D), validating the size classi-

fication used for the electrophysiological experiments (Figure 3).

Moreover, these measurements revealed that the Syt10 KO

significantly reduced the size of both types of neurons (Figures

4C and 4D), confirming the hypothesis from the capacitance

measurements that the Syt10 KO decreases the neuronal

soma size (Figure 4A).

To examine whether not only the neuronal cell bodies, but also

the entire neuronal arborization is affected by the Syt10 KO, we

expressed tdTomato in a small subset of neurons by transfec-

tion, and measured the total length and branching complexity

of their dendrites (Figures 4E–4G). Strikingly, the Syt10 KO

decreased the total dendritic length of mitral neurons by �40%

(Figure 4F), and reduced their arborization evenmore (Figure 4G).

In contrast, measurements of the density of synapses per

dendritic length uncovered no change (Figures 4H and 4I).

Viewed together, these data show that the Syt10 KO causes

a general decrease in neuronal size and arborization in olfactory

bulb neurons, resulting in a decrease in the number of synapses

per neuron even though synapse density per dendrite length is

unchanged. These findings in cultured neurons agree well with

those of the olfactory bulb sections (Figures 1C-1F), and the

�40% decrease in neuronal size and dendritic length corre-

sponds closely to the impairment in synaptic strength we

observed electrophysiologically (Figure 2 and Figure 3).

Syt10 Function Is Not Redundant with that of Closely
Related Syt3, Syt5, or Syt6, and Requires
Ca2+ Binding to its C2 Domains
Syt10 belongs to a group of Ca2+-binding synaptotagmins that

includes Syt3, Syt5, and Syt6, and that differs from the group

containing Syt1. The Syt10 group of synaptotagmins exhibit

a high degree of sequence homology, and may heterodimerize

(Fukuda et al., 1999), suggesting that these synaptotagmins

are functionally redundant, similar to the redundancy among
Cell 145, 300–311, April 15, 2011 ª2011 Elsevier Inc. 303
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Figure 3. Conditional Syt10 KO Decreases Synaptic Strength as Analyzed in Cultured Olfactory Bulb Neurons

Olfactory bulb neurons were cultured from conditional Syt10 KO mice (Syt10 cKO), infected at DIV2-3 with lentiviruses expressing inactive (Ctrl) or active Cre

recombinase (Cre) for acute deletion of Syt10, and analyzed on DIV14-16 by whole-cell patch-clamp recordings from large (primarily mitral cells, [A–D] and [I–L])

or small neurons (primarily granule cells, [E–H]; for validation of neuronal types, see Figure 4). Excitatory (A–H) and inhibitory synaptic responses (I–L) were

recorded in 50 mM picrotoxin or 20 mM CNQX and 50 mM D-APV, respectively. Parallel experiments were performed with mitral neurons cultured from littermate

wild-type (WT) and Syt1 KO mice as shown in panels (I)–(L).

(A and B) Representative traces (top) and summary graphs of the frequency and amplitude (bottom) of spontaneous ‘‘mini’’ exitatory mEPSCs recorded in 1 mM

tetrodotoxin in mitral neurons (red = Syt10 KO; blue = Syt1 KO).

(C) Representative traces (left) and summary graphs of the amplitudes of evoked EPSCs (arrows, action potential).

(D) Representative traces (left) and summary graphs of the total charge transfer (right) of EPSCs evoked by application of 0.5 M sucrose (gray line) in 1 mM TTX.

(E–H) Same as A-D, except that excitatory synaptic responses were analyzed in granule cell neurons.

(I–L) Same as A-D, except that inhibitory synaptic responses were analyzed in mitral cell neurons, and Syt1 KO neurons were analyzed in parallel.

All summary graphs show means ± SEMs; number of cells/number of independent cultures analyzed are shown in individual bars. Statistical analyses were

performed by Student’s t test comparing the cre-recombinase treated and control neurons (**p < 0.01). See also Table S1.
the Syt1 group of synaptotagmins that act as Ca2+-sensors for

fast synaptic vesicle exocytosis (Xu et al., 2007). To test this

hypothesis, we examined whether the Syt10 KO phenotype,

measured electrophysiologically, could be rescued by other

members of its group of synaptotagmins. Unexpectedly, we

found that only expression of Syt10, but not of Syt3, Syt5, or
304 Cell 145, 300–311, April 15, 2011 ª2011 Elsevier Inc.
Syt6, reversed the decrease in synaptic strength, the decline in

cell capacitance, and the increase in input resistance produced

by the Syt10 KO (Figures 5A–5C).

We next probed whether Syt10 acts functionally as a Ca2+-

sensor bymutating theCa2+-binding sites of its C2-domains (Fig-

ure S3B; Shin et al., 2009). Rescue experiments showed that the
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Figure 4. Syt10 KO Decreases Neuronal Size and Arborization but

Not Synapse Density per Dendritic Segment

Olfactory bulb neurons were cultured as described for Figure 3.

(A and B) Capacitance (Cm) and input resistance (Rm) measurements from

mitral and granule cell neurons of Syt10 and Syt1 KO neurons compared to

controls.

(C) Representative images of control and cre-recombinase expressing

conditional Syt10 KO neurons stained for the excitatory marker vGlut1 (green),

and the neuronal marker MAP2 (red; yellow = overlap; arrowhead = vGlut1

positive cell bodies; arrows = vGlut1 negative cell bodies).

(D) Size of the soma of neurons expressing (vGlut1+) or lacking the excitatory

marker vGlut1 (vGlut1-), to identify the former as the larger mitral and tufted

neurons, and the latter as primarily composed of the smaller granule cell

neurons.

(E–G) Representative images of mitral neurons expressing tdTomato (intro-

duced by transfection at DIV7; E); measurements of the total dendritic length

of such neurons (F); and Sholl analysis of dendritic branching of these

neurons (G).

(H and I) Representative immunofluorescence images of the dendrites of mitral

neurons (left), and summary graph of the synapse density on such dendrites

(right). Cultured olfactory bulb neurons were stained for MAP2 and synapsin,

and the synapse density on representative dendritic sections was quantified.

Summary graphs depict means ±SEMs; number of cells/independent cultures

analyzed are shown in individual bars. Statistical analyses for summary graphs
Ca2+-binding site mutation inactivated the ability of Syt10 to

reverse the Syt10 KO phenotype (Figures 5D-5F). Thus, Syt10

acts as a Ca2+-sensor to maintain the normal size and arboriza-

tion of olfactory bulb neurons, with a function that is unique to

this synaptotagmin isoform and not shared by other, closely

related synaptotagmins.

Syt10 KO Decreases IGF-1 Secretion
How does Syt10 regulate the growth and arborization of olfac-

tory bulb neurons? Since the experiments up to now indicate

that Syt10 might be a Ca2+-sensor for the exocytosis of an

unknown growth factor, we tested whether cultured olfactory

bulb neurons exhibit an activity-dependent trophic phenotype.

At the same time, we examined whether olfactory bulb neurons

secrete IGF-1 in an activity-dependent manner, because this

growth factor is abundantly expressed in olfactory bulb neurons,

supports olfactory bulb neurogenesis and differentiation, and

maintains olfactory map formation (Bartlett et al., 1991; Giaco-

bini et al., 1995; Vicario-Abejon et al., 2003; Cheng et al., 2003;

Scolnick et al., 2008).

Chronic treatment of cultured wild-type olfactory bulb neurons

with 1 mMtetrodotoxin (TTX), a Na+-channel blocker that silences

network activity in cultured neurons, caused a decrease in cell

capacitance and an increase in input resistance similar to the

effect of the Syt10 KO (Figure S3D). Direct measurements of

the IGF-1 concentration in the medium revealed a significant

decrease of secreted IGF-1 in TTX-treated neurons (Figure S3D).

Thus, silencing of olfactory bulb neurons stunts their growth, and

decreases IGF-1 secretion.

We next testedwhether secretion of IGF-1 could be stimulated

bymild depolarization of cultured olfactory bulb neurons by incu-

bating them in 15mMK+, andwhether the Syt10 KO impaired the

stimulated secretion of IGF-1 (Figures 5G–5I). Indeed, 15 mM K+

depolarization massively stimulated IGF-1 secretion; this

increase was significantly decreased by the Syt10 KO, whereas

the baseline secretion of IGF-1 was unaffected (Figures 5G–5I).

We performed these experiments at two different ages of the

neuronal cultures (DIV7 and DIV14) to ensure that the observed

effects were stable, and obtained similar results (Figures 5G

and 5H). The Syt10 KO phenotype was rescued by wild-type

Syt10, whereas mutant Syt10 unable to bind Ca2+ was also

unable to rescue the phenotype. Morever, we tested the effect

of the Syt1 KO on K+-stimulated IGF-1 secretion but found no

change, confirming the specificity of the Syt10 KO phenotype

(Figure 5I).

Exogenous IGF-1 Rescues the Syt10 KO Phenotype
The selective effect of the Syt10 KO on IGF-1 secretion, and its

rescue by wild-type but not mutant Syt10, correlates well with

the overall Syt10 KO phenotype. However, the fact that the

Syt10 KO only partially suppresses stimulated secretion of IGF-

1 (Figures 5G and 5H) raises the question whether the Syt10

KO phenotype is entirely due to a relative lack of IGF-1 secretion,
were performed by Student’s t test comparing the cre-recombinase treated

neurons to control neurons (*p < 0.05; **p < 0.01), except for (G), which was

assessed by 2-way ANOVA. See also Table S1.
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Figure 5. Syt10 Functions as a Specific

Ca2+-Sensor for IGF-1 Secretion in Cultured

Olfactory Bulb Neurons

(A–C) Only Syt10 but not closely related synapto-

tagmin isoforms (Syt3, Syt5, and Syt6) rescue the

Syt10 KO phenotype. Olfactory bulb neurons

cultured from conditional Syt10 KO mice (Syt10

cKO) were infected with control (Ctrl) or Cre-re-

combinase expressing lentiviruses (Cre) that coex-

press the indicated synaptotagmins. Panels depict

representative traces of evoked IPSCs (A) and

summary graphs of the amplitude ([B] left) and

chargetransferofevoked IPSCs ([B] right), andof the

capacitance ([C] left) and input resistance ([C] right)

monitored in mitral neurons (see also Figure S3A).

(D–F) Same as A-C, except that neurons were

rescued with wild-type (Syt10WT) or mutant Syt10 in

which the Ca2+-binding sites of both C2-domains

were abolished (Syt10mt). For a description of the

mutation, see Figure S3B.

(G and H) Measurements of depolarization-induced

IGF-1 secretion by cultured olfactory bulb neurons

after stimulationwith5or15mMK+ for 1hratDIV7-8

(G) or DIV14 (H). Neurons cultured from conditional

Syt10 KO mice were infected with lentiviruses

expressing inactive (Ctrl) or active cre-recombinase

(Cre), the latter without (no Syt10) or with coex-

pression of wild-type (Syt10WT) or Ca2+-binding site

mutant Syt10 (Syt10mt). The IGF-1 concentration

in the medium was measured by ELISA. Note that

the secretory capacity decreaseswith the ageof the

culture, but the effect of the Syt10 KO remains the

same. (see Figure S3C for ELISA standardization).

(I) Same as G and H, except that wild-type olfactory

bulb neurons without or with shRNA-dependent

knockdown of Syt1 (Syt1 KD) were analyzed.

(J) Representative traces (left; arrows = action

potentials) and summary graphs of the charge

transfer (right) of IPSCs monitored in mitral neurons

from conditional Syt10 KO mice that were infected

with control (Ctrl) or cre-recombinase-expressing

lentivirus (Cre) at DIV2, and maintained in the

absence or presence of 50 mg/l synthetic IGF-1

(�6.5 nM) added to the medium from DIV7 onward

(see Figure S3E for IPSC amplitudes).

(K)Summarygraphsof the theneuronal capacitance

(left) and input resistance (right) of mitral neurons

treated as described in J.

All summary graphs depict means ± SEMs; number

of cells and number of independent cultures

analyzed isshown in individual barsexcept forG-I, in

which the number of independent culture experi-

ments is indicated in the bars. Statistical analyses

were performed by Student’s t test comparing the

cre-recombinase treated neurons to control

neurons (*p < 0.05; **p < 0.01). See also Table S1.
or whether additional factors contribute. To address this ques-

tion, we tested whether the Syt10 KO phenotype can be rescued

by simple addition of exogenous IGF-1 to the culture medium.

Strikingly, supplementation of the culture medium with

synthetic IGF-1 from DIV7 onward completely reversed the

Syt10 KO phenotype, but had no effect on the properties of

control neurons (Figures 5J and 5K). Thus, a relative lack of

IGF-1secretion fully accounts for theoverall Syt10KOphenotype.
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Syt10 and IGF-1 Colocalize in Somatic and Dendritic
Vesicles in Mitral Neurons
To localize Syt10 and IGF-1 in neurons, we tested available anti-

bodies (commercial and lab-made antibodies) with various

protocols, but obtained no specific immunocytochemical

signals. Therefore, we employed exogenously expressed,

tagged Syt10 and IGF-1 for localization studies. We generated

an N-terminal fusion protein of Syt10 with pHluorin (Miesenböck
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Figure 6. Colocalization of Syt10 and IGF-1 in Olfactory Bulb

Neurons

(A) pHluorin-tagged Syt10 rescues the decrease in total synaptic transmission

induced by Syt10KO. Summary graphs show the IPSC amplitude (left), IPSC

charge transfer (left middle), capacitance (right middle), and input resistance

(right) monitored in mitral neurons from conditional KO mice infected either

with control lentivirus (Ctrl) or with lentivirus expressing cre recombinase alone
et al., 1998) to allow visualization of Syt10 trafficking in neurons,

and added a Flag-epitope to IGF-1. Flag-tagged IGF-1 was

secreted similar to endogenous IGF-1 (Figure S4A), and

pHluorin-tagged Syt10 fully rescued the Syt10 KO phenotype,

suggesting that it is fully functional (Figure 6A).

We next analyzed by immunofluorescence labeling the loca-

tion of IGF-1 and Syt10 in neurons expressing the tagged

proteins. Strikingly, the two proteins completely colocalized,

but their locations did not overlap with those of synaptic markers

(Figures 6B–6D). Specifically, bothSyt10 and IGF-1were found in

cytoplasmic vesicles (estimated size: Syt10-pHluorin vesicles =

0.99 ± 0.06 mm2; Flag-IGF-1 vesicles = 1.02 ± 0.06 mm2; n = 3

independent cultures; Figure S4B) that were abundantly present

in the soma of neurons (Figure 6B) as well as all their dendrites

(Figure 6C). These vesicles did not colocalize with any synaptic

vesicle protein analyzed (Figure 6C), or with the Golgi marker

GM130 (Figure 6D). Thus, Syt10 is present on neuronal vesicles

containing IGF-1 that are not enriched at synapses.

Neuronal Depolarization Induces Rapid Exocytosis
of Syt10-Containing Vesicles
pHluorin fluorescence is quenched at acidic pH, but activated at

neutral pH (Miesenböck et al., 1998); thus, the pHluorin moiety

on tagged Syt10 (Figure 6) allows imaging of Syt10 trafficking

in and out of acidic compartments, such as intracellular vesicles.

We found that under resting conditions, neurons expressing

pHluorin-tagged Syt10 exhibited very weak fluorescence, sug-

gesting that the pHluorin tag was localized inside an acidic

vesicle lumen (Figure 7A). Consistent with this notion, addition

of NH4Cl that rapidly neutralizes the pH of intracellular organelles

caused a robust increase in Syt10-pHluorin fluorescence (Fig-

ure 7A). The effect of NH4Cl was rapidly reversed by washing

NH4Cl out. This allowed us to visualize the Ca2+-dependent traf-

ficking of individual Syt10-positive vesicles in neurons. We

added andwashed out NH4Cl to identify the vesicles, and subse-

quently tested whether the same vesicles could be stimulated to

undergo exocytosis by K+-induced depolarization (Figure 7A).

We treated neurons expressing Syt10-pHluorin with NH4Cl,

imaged the increase in pHluorin fluorescence, washed out the

NH4Cl, and then imaged Syt10-pHluorin fluorescence after

application of 15 mMK+, a stimulus that induced IGF-1 secretion

as described above (Figures 5G–5I). Strikingly, depolarization of
(no Syt) or together with untagged Syt10 or with pHluorin-tagged Syt10. Data

depict means ± SEMs; number of cells and number of independent cultures

analyzed is shown in individual bars. Statistical analyses were performed by

Student’s t test comparing the cre-recombinase treated neurons to control

neurons (** = p < 0.01).

(B) Low- and high-magnification images of a neuron with lentivirally expressed

Syt10-pHluorin and transfected Flag-tagged IGF-1, analyzed by indirect

immunofluorescence. Note complete colocalization of Syt10 and IGF-1. For

demonstration that Flag-tagged IGF-1 is secreted and for an analysis of the

size of the vesicles positive for Syt10 and IGF-1, see Figure S5.

(C) Analysis of the dendritic localization of Syt10 in comparison with a series of

pre- and postsynaptic markers. Note the completely dendritic localization of

Syt10.

(D) Relative localization of Syt10 and of theGolgi-marker GM130 in the soma of

a neuron to illustrate that Syt10 is not part of the Golgi apparatus. See also

Table S1.
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Figure 7. Monitoring Activity-Dependent Exo-

and Endocytosis of pHluorin-Tagged Syt10

(A) Syt10-pHluorin signal in a representative neuron ex-

pressing Syt10-pHluorin that was first incubated with

50 mM NH4Cl to neutralize all intracellular acidic

compartments, thereby visualizing pHluorin-containing

compartments, and washed afterwards with Tyrode’s

solution. The same neuron was subsequently stimulated

with 15 mM K+ to trigger Ca2+-dependent vesicle

exocytosis as shown in the bottom images, and washed

again (arrows, example vesicles). (B) Quantitation of the

pHluorin signal observed in neurons during sequential

exposure to 50 mM NH4Cl or 15 mM K+. Traces from an

exemplary neuron repeatedly imaged are shown on top

(average signals from the exemplary traces are shown in

red), and summary graphs for multiple neurons (means ±

SEMs; n = 3 independent cultures) are shown on the

bottom. The graphs on the right depict the correlation

between fluorescent changes evokedbyK+ andNH4Cl in

the same neurons. See also Table S1.
neurons with 15 mM K+ caused a similar pattern of vesicular

pHluorin fluorescence activation as a prior NH4Cl exposure (Fig-

ure 7A). These data support the conclusion of the IGF-1 secre-

tion and the Syt10 and IGF-1 localization experiments that

Ca2+-binding to Syt10 present on IGF-1 containing vesicles trig-

gers their exocytosis.

To quantify the dynamics of Syt10-mediated exocytosis, we

measured the time course of the pHluorin-signal in neurons after

addition of NH4Cl or K+ (Figure 7B). On average, 15 mM K+

produced �30% of the total pHluorin-fluorescence increase

revealed by NH4Cl, suggesting that approximately a third of

the Syt10-containing vesicles were stimulated for exocytosis

by 15 mM K+. The time course of K+-stimulated exocytosis

was rapid (�10 s; Figure 7B). Although the extent of fluorescence

increase induced by NH4Cl and K+ varied between neurons, they

correlated well with each other within the same neuron (Fig-

ure 7B). Thus, Syt10 is a vesicular Ca2+-sensor for IGF-1 contain-

ing vesicles that mediates rapid activity-dependent secretion

of IGF-1.

DISCUSSION

Synaptotagmins function as major Ca2+-sensors for exocytosis

(Gustavsson and Han, 2009; Südhof and Rothman, 2009). Eight
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Ca2+-binding synaptotagmins are ex-

pressed in brain, but only Syt1, Syt2,

Syt7, and Syt9 have a known biological

role, namely a largely overlapping func-

tion as Ca2+-sensors for synaptic and

neuroendocrine vesicle exocytosis (Gep-

pert et al., 1994; Fukuda et al., 2002;

Pang et al., 2006; Sorensen et al., 2003;

Lynch and Martin, 2007; Xu et al., 2007;

Gustavsson et al., 2008 and 2009;

Schonn et al., 2008). The remaining four
Ca2+-binding synaptotagmins (Syt3, Syt5, Syt6, and Syt10)

constitute a separate homologous group, united by common

Ca2+-binding features of their C2-domains (Sugita et al., 2002),

and by similar intravesicular N-terminal sequences that form

disulfide-bonded dimers (Fukuda et al., 1999). Despite their

abundant neuronal expression, however, no function is known

for these synaptotagmins in neurons. Here, we have analyzed

the role of one member of this class of synaptotagmins, Syt10,

focusing on the olfactory bulb where this protein is expressed

at high levels (Mittelstaedt et al., 2009).

We generated conditional and constitutive Syt10 KO mice,

and demonstrated that these mice exhibited impaired food-

finding behaviors and an overall decrease in synapse numbers

in the external plexiform layer, but not the glomerular layer, of

the olfactory bulb (Figure 1). We showed that overall synaptic

transmission between granule and mitral cell neurons was

decreased in acute olfactory bulb slices derived from constitu-

tive Syt10 KO mice, and that both excitatory and inhibitory

synaptic strength were lowered in cultured olfactory bulb

neurons after conditional deletion of Syt10 (Figure 2 and Fig-

ure 3). Strikingly, these changes were accompanied by

a decrease in the capacitance and an increase in the input resis-

tance of olfactory bulb neurons, by a decrease in their soma size,

and a loss of dendritic arborization, without a change in synapse



density per dendrite length (Figure 2 and Figure 4). The reduction

of neuronal size and dendritic branching in Syt10-deficient

neurons corresponded to the decrease in synaptic strength in

these neurons, suggesting that the Syt10 KO produced an over-

all loss of synapse numbers between granule and mitral cell

neurons due to decreased arborization. Parallel experiments in

olfactory bulb neurons lacking Syt1, which belongs to a different

group of synaptotagmins and acts as the Ca2+-sensor for fast

exocytosis of neurotransmitter vesicles in the same neurons,

showed that although the Syt1 KO caused a massive synaptic

phenotype in these neurons as expected (Geppert et al., 1994),

its phenotype was dramatically different from that of the Syt10

KO in every parameter examined (Figure 3 and Figure 4). Thus,

Syt10 and Syt1 perform distinct functions in the same neurons.

Moreover, rescue experiments surprisingly revealed that the

Syt10 KO phenotype is only rescued by Syt10 but not by other

closely related synaptotagmins, indicating that the function of

Syt10 is unique and specific (Figure 5). In addition, mutant

Syt10 unable to bind Ca2+ did not rescue the KO phenotype,

suggesting that Syt10 acts as a Ca2+-sensor (Figure 5).

The electrophysiological Syt10 KO phenotype suggested that

Syt10 is essential for the activity-dependent secretion of

a growth factor in olfactory bulb neurons, prompting us to focus

on IGF-1 that is abundantly expressed in olfactory bulb (Aguado

et al., 1993; Rotwein et al., 1988) and is essential for olfactory

bulb development (Giacobini et al., 1995; Cheng et al., 2003;

Scolnick et al., 2008). We thus tested whether IGF-1 is released

from olfactory bulb neurons in an activity-dependent manner.

Indeed, we found that chronic inactivity impaired IGF-1 secretion

in wild-type olfactory bulb neurons, and that acute mild K+-

induced depolarization stimulated IGF-1 secretion from these

neurons (Figures 5G–5I and Figure S3D). The Syt10 KO impaired

the depolarization-induced stimulation of IGF-1 secretion from

olfactory bulb neurons; this impairment could be rescued by

wild-type but not by Ca2+-binding site mutant Syt10 (Figures

5D–5F). Importantly, the entire Syt10 KO phenotype could be

rescued by simple addition of exogenous IGF-1 to the medium,

confirming that a relative loss of IGF-1 secretion fully accounts

for the Syt10 KO phenotype (Figures 5J and 5K). Moreover,

immunocytochemical experiments revealed that Syt10 and

IGF-1 colocalize to an abundant set of cytoplasmic vesicles of

�1 mM diameter that were distributed throughout the cell body

and dendrites of the neurons (Figure 6). Finally, using pHluorin-

tagged Syt10 we showed that unlike presynaptic neurotrans-

mitter vesicles, Syt10-containing vesicles were somatodendritic,

and were triggered for rapid exocytosis by the same mild depo-

larization used for the IGF-1 secretion stimulation (Figure 7).

We believe our data allow four conclusions. First, they reveal

that Syt10 functions as a Ca2+-sensor for exocytosis for a non-

synaptic type of vesicles. With this finding, we broaden the syn-

aptotagmin paradigm to other forms of synaptotagmins and

other pathways of secretion in neurons, beyond the previously

established role of Syt1, Syt2, Syt7, and Syt9 in neurotransmitter

and neuropeptide exocytosis (Südhof and Rothman, 2009).

Syt10 belongs to a class of Ca2+-binding synaptotagmins that

also includes Syt3, Syt5, and Syt6, and that are characterized

by N-terminal disulfide bonds that dimerize these synaptotag-

mins. It had been suggested that these synaptotagmins may
function as Ca2+-sensors for exocytosis, possibly even for asyn-

chronous release (Li et al., 1995b; Hui et al., 2005), but no

previous demonstration of such a function was possible due to

a lack of genetics. Our data confirm that at least one member

of this family is indeed a Ca2+-sensor for exocytosis, although

not for asynchronous exocytosis of neurotransmitter vesicles,

but for a completely different type of vesicle exocytosis in the

same neurons that use the Syt1-class of synaptotagmins for

neurotransmitter release. Moreover, our data show that Syt10

is not functionally redundant with other members of its class,

a surprising finding given suggestions that the synaptotagmins

of this class may even heterodimerize (Fukuda et al., 1999).

Second, our data show that two different synaptotagmins

control two different Ca2+-dependent secretory pathways in the

same neuron. Thus, different synapotagmins specify different

secretory pathways. Previous studies have suggested that Syt7

in fibroblasts controls lysosome exocytosis (e.g., see Martinez

et al., 2000; Flannery et al., 2010), but in neuroendocrine cells,

Syt7 appears to control the same pathway as Syt1, Syt2, and

Syt9, and does not regulate a distinct lysosome secretion

pathway (Wang et al., 2005; Schonn et al., 2008; Gustavsson

et al., 2008 and 2009; Li et al., 2009). The finding that two different

synaptotagmins control exocytosis of two non-overlapping

secretory pathways, despite a similar Ca2+-binding mechanism,

opens up the possibility that the many different synaptotagmins

which have been describedmolecularly but remain to be charac-

terized functionally may be involved in controlling distinct secre-

tory pathways in neurons. Thus, synaptotagmins may embody

specificity signals that direct regulation of different pathways in

a pathway-specific manner.

Third, our data uncover, to our knowledge, the first regulatory

mechanism for IGF-1 secretion. Although IGF-1 is an important

and widely studied growth factor with many essential functions,

little is known about how it is secreted and how its secretion is

regulated. Our data show that at least in olfactory bulb neurons,

IGF-1 is secreted by an activity-dependent, Ca2+-regulated

vesicular pathway of exocytosis.

Finally, our results provide mechanistic insights into the

molecular and physiological basis of activity-dependent neural

circuit development in the olfactory bulb. Previous studies

have shown that neuronal activity plays an essential role in the

formation and maintenance of olfactory sensory maps. Intrigu-

ingly, IGF-1 has also been implicated in shaping the connectivity

of developing olfactory neurons (Scolnick et al., 2008). Our

results suggest that the activity- and Syt10-dependent vesicular

pathway of IGF-1 secretion may play a central role in the activity-

dependent tuning of emerging olfactory circuits by mediating

IGF-1 release in response to sensory stimuli or spontaneous

neuronal firing.

Our results also raise new questions. Clearly, IGF-1 secretion

is not universally dependent on Syt10 because the Syt10 KO

phenotype does not resemble the IGF-1 KO phenotype (Baker

et al., 1993; Liu et al., 1993; Beck et al., 1995). This suggests

that IGF-1 secretion mechanisms differ among cell types – for

example, it is possible that IGF-1 secretion in other cells involves

other types of synaptotagmins (e.g., Syt3, Syt5, or Syt6), or

different types of regulation. The Syt10 pathway may have

evolved in conjunction with the continuing adult neurogenesis
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of granule neurons in the olfactory bulb, but the expression of

Syt10 in other brain areas, and the induction of Syt10 expression

by seizures (Babity et al., 1997), indicate that the Syt10 pathway

may also operate outside of olfactory bulb neurons, and perform

a general role in injury responses induced by seizures. Thus, it

will be fascinating to test whether seizures initiate expression

of a Ca2+- and Syt10-regulated IGF-1 secretory pathway as an

injury response. In the olfactory bulb and elsewhere, IGF-1 regu-

lates membrane expansion at the axonal growth cone in

a process that is necessary for axon specification (Giacobini

et al., 1995; Scolnick et al., 2008), which may also be important

for neuronal repair. In addition, IGF-1 promotes dendritic devel-

opment (Cheng et al., 2003). Furthermore, although our data

support the notion that synaptotagmins generally function in

regulating exocytosis, they raise the question of the function of

the other synaptotagmins – for example, does the adundant

expression of all of synaptotagmins in brain mean that they

mediate other parallel types of Ca2+-triggered exocytosis, i.e.,

that neurons can have even more different synaptotagmin-

dependent pathways of exocytosis? Finally, it is unclear why

Syt10 and the other disulfide-bond dimerized synaptotagmins

contain their signature disulfide bonds. Independent of the

answers to these questions, however, it seems likely that synap-

totagmins generally control secretory pathways by similar

molecular mechanisms, and that they do so by isoform-specific

interactions that allow independent regulation of multiple Ca2+-

triggered pathways in the same cell.

EXPERIMENTAL PROCEDURES

Generation and Husbandry of Mutant Mice

All mice described in this paper are deposited with Jackson Labs, and are

freely available. The targeting strategy, primer sequences, mouse breeding

procedures, and behavioral tests are described in detail in the extended

methods in the SOMs. All analyses in this paper on constitutive KO mice

were performed with littermate controls.

Constructs and Lentiviruses

Lentiviruses expressing inactive and active cre-recombinase as EGFP-fusion

proteins without or with rescue proteins were produced in transfected

HEK293 cells as described (Ho et al., 2006).

Culture of Olfactory Bulb Neurons

Culture of olfactory bulb neurons were obtained using the same protocol as for

cortical neurons (Maximov et al., 2007; Xu et al., 2007; Pang et al., 2010).

Morphological Analyses

Morphological analyses were performed on olfactory bulb sections and

cultured olfactory neurons as described in detail in the SOMs.

Electrophysiological Analyses

Electrophysiological analyses were performed in acute olfactory bulb slices

from 14- to 16-day-old wild-type and Syt10 KO (�/�) mice as described

(Chen and Shepherd, 1997), or in olfactory bulb cultured as described above,

using the methods we described previously (Maximov et al., 2007; Xu et al.,

2007; Pang et al., 2010). For details, see SOMs.

Measurements of IGF-1 Secretion

Syt10- or Syt1-deficient or control cultured olfactory bulb neurons were incu-

bated at DIV7 or DIV14 for 1 hr in 150 ml fresh culture medium containing either

5 mM or 15 mM KCl, with adjusted osmolarity. After stimulation, the

IGF-1 concentration in the medium was measured using the Quantikine
310 Cell 145, 300–311, April 15, 2011 ª2011 Elsevier Inc.
Mouse/Rat IGF-1 Immunoassay (http://www.rndsystems.com/pdf/mg100.

pdf,R&D Systems, Inc.; see Figure S3).

Syt10-pHluorin Live Cell Imaging

Syt10-pHluorin was lentivirally expressed in cultured olfactory bulb neurons at

DIV2, and analyzed at DIV14-16 as described in the SOMs.

Statistical Analyses

All experiments were performed in a ‘blinded’ fashion, i.e., the experimenter

was unaware of the genotype of the samples being studied, with at least three

independent cultures for each type of experiment. All statistical comparisons

were made using Student’s t test or 2-way ANOVA as indicated.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, four

figures, and one table and can be found with this article online at doi:10.

1016/j.cell.2011.03.034.
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Synaptotagmin I functions as a calcium regulator of release probability. Nature

410, 41–49.

Flannery, A.R., Czibener, C., and Andrews, N.W. (2010). Palmitoylation-

dependent association with CD63 targets the Ca2+ sensor synaptotagmin VII

to lysosomes. J. Cell Biol. 191, 599–613.

http://www.rndsystems.com/pdf/mg100.pdf
http://www.rndsystems.com/pdf/mg100.pdf
http://dx.doi.org/doi:10.1016/j.cell.2011.03.034
http://dx.doi.org/doi:10.1016/j.cell.2011.03.034


Fukuda, M., Kanno, E., and Mikoshiba, K. (1999). Conserved N-terminal

cysteinemotif is essential for homo- and heterodimer formation of synaptotag-

mins III, V, VI, and X. J. Biol. Chem. 274, 31421–31427.

Fukuda, M., Kowalchyk, J.A., Zhang, X., Martin, T.F., andMikoshiba, K. (2002).

Synaptotagmin IX regulates Ca2+-dependent secretion in PC12 cells. J. Biol.

Chem. 277, 4601–4604.

Geppert, M., Goda, Y., Hammer, R.E., Li, C., Rosahl, T.W., Stevens, C.F., and
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R.C., and Südhof, T.C. (2006). Genetic analysis of Mint/X11 proteins: essential

presynaptic functions of a neuronal adaptor protein family. J. Neurosci. 26,

13089–13101.

Hui, E., Bai, J.,Wang, P., Sugimori, M., Llinas, R.R., and Chapman, E.R. (2005).

Three distinct kinetic groupings of the synaptotagmin family: candidate

sensors for rapid and delayed exocytosis. Proc. Natl. Acad. Sci. USA 102,

5210–5214.

Isaacson, J.S., and Strowbridge, B.W. (1998). Olfactory reciprocal synapses:

dendritic signaling in the CNS. Neuron 20, 749–761.
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