

Myristic acid ≥ 30%

- The broad-spectrum and strongest anti-bacterial MCFA, effective inhibit Clostridium perfringens, E.coli, Salmonella, SD (MIC _{C. perfringens}: 1-4 ppm).
- 2 Moderately anti-coccidial effect, ACI=160 (100-500g/t).
- ③ Original enteric-release technology.
- 4 Natural performance enhancer.
- 5 Alternative to AGPs.
- 6 Generally Recognized as Safe.

1. Original enteric-release technology

Myristic acid ≥ 30%

Original ion exchange resin technology to ensure myristic acid was released in the posterior part of small intestine.

2. Muti-target of antibacterial mechanisms

- ① Destruction of bacterial cell membrane.
- 2 Enter the cell and increase the pH pressure inside and outside the bacteria.
- 3 Bacterial lipase inhibitor.
- 4 Uncoupling of the electronic chain of bacterial respiration action and inhibit ATP synthesis.

3. Characteristics of Gutmyria

- ① Broad-spectrum antibacterial activity, especially to *Clostridium perfringens* (Table 1).
- ② The strongest antimicrobial Middle chain fatty acid.
- Moderately anti-coccidial effect, Anti-coccidial index>160 (100-500g/t).
- 4 An original enteric-release preparation to maintain effective concentration for pathogens inhibition.
- S Highly effective against animal diarrhea, watery stools, blood dysentery, ileitis, necrotizing enteritis, etc.

Table 1. Gutmyria on pathogens inhibition

Bacteria species	MIC(ppm)
Clostridium perfringens	1 - 4
E. coli	10 - 20
Salmonella	10 - 30
Campylobacter jejuni	1.2 - 12
Tr. hyodysenteriae	10 - 30

4. Customer benefits

- ① Alternative to all AGPs with equivalent mechanism, efficiency and cost.
- ② NO drug resistance, NO residue, NO withdrawal time.
- 3 Widely application for all animals on gut healthy and growth promotion.

5. Application effects

Figure 1. Therapeutic effects of Gutmyria on diarrhea of weaned piglets

Note: Jiangmen Guangdong 2017, 4×25, 7 days.

Table 2. Application effects of Gutmyria on Weaned piglets (USA, 2022)

Treatment				<i>P</i> -value		
Items	Negative control (NC)	BMD	Gutmyria (MA)	SEM	vs. NC BMD	vs. NC MA
Initial BW,kg	6.6	6.6	6.6	0.3	1.000	0.819
Final BW,kg	19.0	21.3	21.7	0.9	0.046	0.021
ADG,g/d	353	419	431	23	0.043	0.018
ADFI,g/d	515	606	623	31	0.046	0.018
FCR	0.66	0.69	0.69	0.02	0.330	0.315

Note: North Carolina State University, USA, May 20th 2022 to Jun 25th 2022.

21 day-old piglets, 3 groups × 12 replicates × 1 pig for 35 days trail.

Negative control: corn soybean meal diet (NRC, 2012). BMD group: 250ppm bacitracin methylene disalicylate (BMD). Gutmyria group: 2000ppm (day 0-20) and 1200ppm (day 21-35).

P<0.05 means significant differences.

Table 3. Effects of Gutmyria on growth performance of Ross 308 broilers (Canada, 2022)

Itarra	Treatment			CEM	Develope
Items	Negative control	Antibiotic	Gutmyria	SEM	<i>P</i> -value
ADG,g	70.89	72.42	71.95	0.389	0.637
ADFI, g	112.57	112.07	112.63	0.636	0.992
FCR	1.588a	1.548 ^b	1.566ab	0.005	0.019
Mortality, %	7.292	6.771	5.208	0.905	0.951

Figure 2. Effects of Gutmyria on fecal scores of Ross 308 broilers

Note: University of Manitoba, Canada, Dec 1st to Jan 11th 2021.

3 groups × 6 replicates × 32 Ross 308 broilers were reared on floors.

Antibiotic group: Avilamycin 50ppm added. Gutmyria group: 500ppm (1-14 days old), 400ppm (15-28 days old), 300ppm (29-42 days old).

P<0.05 means significant differences.

Table 4. Effects of feed additives on performance in LSL lite hens from 21 to 31 weeks of age

Item	Negative control	BMD	Gutmyria
Laying rate, %	95.4 ^b	96.7ª	97.6ª
Feed intake, g/d	102.5 ^b	106.1ª	106.9a
Egg weight, g	57.3°	58.8ª	58.1 ^b
FCR, g/g	1.878	1.865	1.883

Note: University of Guelph, October 2022 - January 2023. 18-week-old of Lohmann LSL-lite, 10 weeks trail Control: corn soybean meal diet (NRC1994); BMD: control + 110g/metric ton of BMD; Gutmyria: control+300g/ton of Gutmyria. Different superscript in the same row means significant differences (P<0.05) .

Table 5. Effects of Gutmyria on growth performance of Cherry Valley Meat Duck (*Jiangsu*, 2022)

Items	Negative control	Antibiotic	Gutmyria
Final BW,kg	4.01±0.02°	4.13±0.02 ^b	4.15±0.03 ^b
ADFI,g	171.66 ± 1.15^{ab}	173.64 ± 1.30^{a}	170.60±2.31 ^{abc}
ADG,g	$96.67 \pm 0.56^{\circ}$	99.56±0.60b	100.05±0.65b
FCR	1.82±0.02°	1.77±0.01 ^b	1.74±0.02 ^{bc}
Mortality,%	96.21±2.17	98.48±0.96	98.48±0.96

Note: Jiangsu Academy of Agricultural Sciences, Dec 1st 2021 to Jan 11th 2022.

Control:commercial feed; Antibiotic: control + 50ppm chlortetracycline; Gutmyria:control +400ppm (1-21days) or 200ppm (22-42days) Gutmyria.

P<0.05 means significant differences.

Table 6. Anti-coccidial Index (ACI) comparison of Gutmyria and Monensin

Items	Positive control	Negativecontrol	Monensin	Gutmyria-200	Gutmyria-300
Survival rate (%)	100	100	100	100	100
Relative weight gain (%)	69.14	100.00	63.13	76.20	76.88
Lesion value	27.5	0	25.5	27.5	25.5
Oocyst value	40	0	1	20	10
Anti-coccidial Index	101.54	200	136.63	128.70	141.38

Note: School of Veterinary Medicine, Yangzhou University.

Fifty 20-day-old chickens with similar weights were divided into 5 groups. Eimeria tenella was infected with approximately 8.5×10^4 sporulated oocysts via the crop at 22 days of age. The experiment concluded on the 8th day post-infection (30 days of age).

ACI was calculated following Merck's method: ACI = (Survival rate + Relative weight gain) - (Lesion score + Oocyst value).

ACI >180 were considered highly effective, 160<ACI<180 were considered moderately effective, 120<ACI<160 were considered low effective.

³ groups × 6 replicates × 22 ducks reared for 42 days.

Table 7. Anti-coccidial Index (ACI) comparison of Gutmyria and Maduramicin

Items	Positive control	Negativecontrol	Monensin	Gutmyria-300	Gutmyria-500
Survival rate (%)	100	100	100	100	100
Relative weight gain (%)	74.30	100.00	80.15	91.37	92.01
Lesion value	27	0	25	26.5	19.5
Oocyst value	40	0	20	20	10
Anti-coccidial Index	107.3	200	135.15	144.87	162.51

Note: The trail implementation university and the trail design are the same as above.

6. Recommended dosage

Species	Stage	Dosage (g/t)	Species	Stage	Dosage (g/t)
Swine	Weaning piglet	500 - 1,500	Chicken	Starter	200 - 500
	Nursery	500 - 1,200		Grower	200 - 400
R	Grower	300 - 500		Finisher	100 - 300
	Finisher	200 - 300		Layer	100 - 200
Ruminant	Calf	500 - 1,000		Breeder	100 - 1,000
(Replace CTC,	Lamb	500 - 1,000	Duck	Meat duck	100 - 200
Monensin)	Fattening	1,000 - 2,000		Layer	100 - 200
	Lactating	1,000 - 2,000		Breeder	100 - 1,000

Note: this dosage is recommend for complete replace all AGPs.

Guangzhou Insighter Biotechnology Co., Ltd.

