



Aspergillus Niger and its directed cultures : ≥5.0 x 108 CFU/g (Prebiotic as carrier)

# 1. Highly effective against:

- 1 EHP (Enterohepatic Sporozoites) in shrimp.
- 2 White feces syndrome (WFS) in shrimp and against aquatic pathogens (Vibro paraheamolyticus, Vibro harveyi, Ameromonas hydrophila).
- 3 SARA (subacute ruminal acidosis) in sheep, beef and dariy cattle (alternative to CTC; monensin).
- 4 Aniaml intestinal disorders (E. coli, Salmonella, SD, C. perf ...).

# 2. Natural performance enhancer.

(Alternative to AGPs.)







## 1. Main bioactive components

Aspergillus Niger (≥5.0×10° CFU/g), its directional cultures (including live fungus, inactivated fungus and their metabolites) and prebiotics carrier.

## 2. Mechanisms of action

- ① Bioactive substances secreted by live *Aspergillus Niger*, such as Safety antibacterial substance, enzymes, acids, etc.
- ② Potent mixed prebiotics included in inactivated fungus.
- ③ Combination effects from various bioactive metabolites and prebiotics carrier, such as antimicrobial agents, immunopotentiator etc.

#### 3. Characteristics

- 1) The unique strains and antimicrobial direction fermentation process.
- ② Highly effective against animal intestinal disorders, such as diarrhea, watery stools, blood dysentery, ileitis, necrotic enteritis.
- ③ Highly effective to white feces syndrome (WFS) and against aquatic pathogens, such as Vibrio parahaemolyticus, Vibrio harveyi, Aeromonas hydrophila.
- 4 Highly effective against diarrhea in calves and lambs, preventing SARA and hepatic cyst in ruminant.
- 5 Strong resistant to heat, acid and feed processing.
- 6 High compatibility to other additives and materials.
- ① Generally Recognized as Safe (GRAS).

### 4. Customer benefits

- Efficiently replace all AGPs, such as Calcium oxytetracycline, Enramycin, Avilamycin, CTC, monensin etc.
- ② Efficiently replace all probiotics, prebiotics and symbiotics, such as Yeast, Bacillus, lactic acid bacteria etc.
- ③ NO antibiotic resistance, NO residue, NO withdrawal time.
- 4 Widely use for all animal species and promote animal performance.

# 5. Application effects

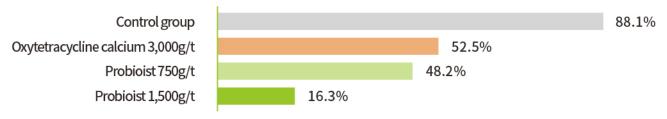



Figure 1. Therapeutic effects of Probioist on diarrhea in weaned piglets

Note: Weaned piglet were fed with low zinc, low copper, no AGPs diets. After 5 days of feeding, 80 diarrhea piglets were selected and randomly divided into 4 treatment groups. The therapeutic effects were compared after 7 days.

Table 1. Preventive effects of Probioist on dysentery and ileitis in grower-finisher pigs

| Items                                           | Negative Control | Probioist 1 | Probioist 2 |
|-------------------------------------------------|------------------|-------------|-------------|
| Number                                          | 368              | 316         | 315         |
| Dosage (g/t)                                    | -                | 100         | 300         |
| Positive rate of dysentery in the beginning (%) | 32.6             | 24.1        | 28.3        |
| Positive rate of dysentery at the end (%)       | 86.1             | 19.0        | 6.8         |
| Positive rate of ileitis in the beginning (%)   | 31.8             | 34.8        | 31.1        |
| Positive rate of ileitis at the end (%)         | 50.5             | 22.0        | 5.1         |
| Incidence of dysentery (%)                      | 7.6              | 0           | 0           |
| Rate of diarrhea and soft stool (%)             | 14.2             | 6.8         | 3.7         |

Note: The trial was conducted in a pig farm of Hong Kong supplier. No antibiotics were added in all groups. Trial: 135-day-old pigs, for 1 month. The positive rates of dysentery and ileitis were determined by PCR.

Table 2. Effects of Probioist on growth performance of Ross 708 broiler

| Items                  | <b>Negative Control</b> | BMD                      | Probioist              | <i>P</i> -value |
|------------------------|-------------------------|--------------------------|------------------------|-----------------|
| Initial BW, g          | 39.3±0.98               | 39.3±0.87                | 39.1±0.83              | 0.766           |
| Final BW, g            | 2558.90±77.83°          | $2659.92 \pm 116.44^{b}$ | 2617.64±86.95ab        | 0.045           |
| ADG, g                 | 60.93±1.85ª             | 63.33±2.77 <sup>b</sup>  | 62.32±2.07ab           | 0.045           |
| ADFI, g                | 99.54±2.62ª             | 103.91±4.21 <sup>b</sup> | 100.66±4.44ab          | 0.024           |
| Unadjusted FCR         | 1.67±0.03               | $1.67 \pm 0.05$          | $1.65 \pm 0.43$        | 0.326           |
| Mortality Adjusted FCR | 1.50±0.03°              | $1.49\pm0.04^{a}$        | 1.46±0.03 <sup>b</sup> | 0.060           |

Note: Virginia Technology & Blue Needle Nutrition, Dec 2022;

A total of 1332 birds, 3 treatments X 12 replicates X 37 birds;

Control: basal diet (NRC1994);

BMD: basal diet + 50 ppm BMD;

Probioist: basal diet +400 ppm (1-14 days) or 300ppm (15-28 days) or 200 ppm (29-42 days) of probioist;

Mortality Adjusted FCR = (Feed Consumption) / (weight of live birds + weight of dead birds); Unadjusted FCR = (Feed consumption) / (weight of live birds);

Different superscript in the same row means significant differences (P < 0.05).

Table 3. Effect of probioist on performance of laying hens

|                | Treatment <sup>1</sup> | Control            | BMD                | Probioist          | SEM  | <i>P-</i> Value |
|----------------|------------------------|--------------------|--------------------|--------------------|------|-----------------|
|                | Week 1–3               | 86.51 <sup>b</sup> | 82.35 <sup>b</sup> | 91.74°             | 1.62 | 0.0009          |
| Laying rate, % | Week 4–6               | 90.21 <sup>a</sup> | 79.89 <sup>b</sup> | 90.48 <sup>a</sup> | 2.41 | 0.0028          |
|                | Week 7–10              | 89.12              | 89.06              | 90.08              | 1.79 | 0.9002          |
|                | Week 1-3               | 63.8               | 62.19              | 63.75              | 1.17 | 0.553           |
| Egg weight, g  | Week 4-6               | 63.89              | 63.31              | 65.83              | 1.37 | 0.418           |
|                | Week 7-10              | 64.35              | 63.49              | 67.24              | 1.19 | 0.097           |
|                | Week 1–3               | 119.2              | 117.7              | 119.8              | 2.34 | 0.814           |
| ADFI, g        | Week 4–6               | 110.9              | 106.1              | 110                | 5.02 | 0.775           |
|                | Week 7–10              | 116.4ª             | 103.4 <sup>b</sup> | 113.1ª             | 2.94 | 0.023           |
| FCR            | Week 1-3               | 2.00               | 2.14               | 1.98               | 0.07 | 0.282           |
|                | Week 4–6               | 1.48               | 1.61               | 1.53               | 0.06 | 0.334           |
|                | Week 7–10              | 1.59               | 1.59               | 1.59               | 0.14 | 1.000           |
|                |                        |                    |                    |                    |      |                 |

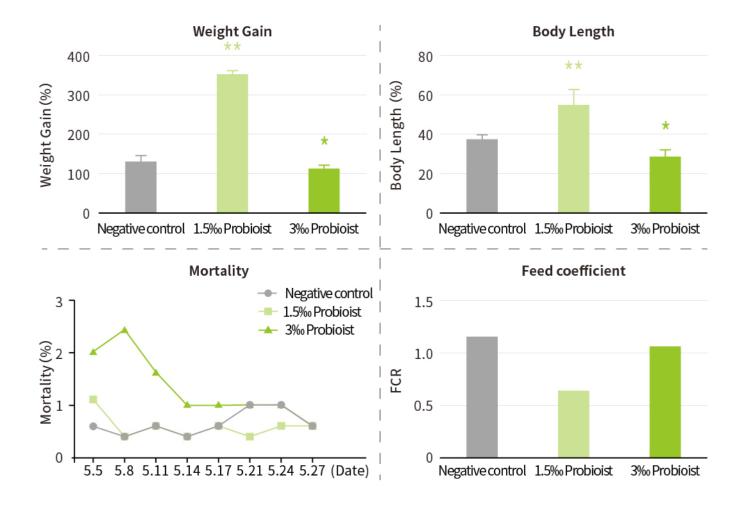
Note: University of Georgia, Athens, USA.

A total of 72 commercial Hy-Line W-36 white laying hens from a 45-week flock.

Control: corn and soybean meal diet; BMD: control +495 mg/kg bacitracin methylene disalicylate (BMD); Probioist: control + 220 mg/kg Probioist.

a-b values within columns not sharing superscripts are significantly different at P < 0.05.

Table 4. Dietary supplementation of Probioist on the growth performance in Cherry Valley Ducks (*JAAS*, 2021)


| Items                 | Negative Control | СТС               | Probioist    |
|-----------------------|------------------|-------------------|--------------|
| ADFI, g               | 171.66±1.15      | 173.64±1.30       | 174.42±1.16  |
| ADG, g                | 96.67±0.56°      | 99.56±0.60b       | 102.56±0.80° |
| Final Body Weight, Kg | 4.01±0.02°       | 4.13±0.02b        | 4.26±0.03ª   |
| F:G                   | 1.82±0.02°       | $1.77\pm0.01^{b}$ | 1.71±0.02°   |
| Survival Rate, %      | 96.21±2.17       | 98.48±0.96        | 96.97±1.52   |

Note: Jiangsu Academy of Agricultural Sciences, December 1st 2021 - January 11th 2022.

Control: commercial no AGPs diet; CTC: control + 50mg/kg aureomycin; Probiost: control+400mg/kg Probiost (1-21 days) or 200mg/kg Probiost (22-42days).

Table 5. Dietary supplementation of Probioist on performance of Pacific White Shrimp (*Litopenaeus vannamei*)

|                | Negative control | 1.5‰ Probioist                 | 3‰ Probioist                 |
|----------------|------------------|--------------------------------|------------------------------|
| Animal Numbers | ~50,000          | ~50,000                        | ~50,000                      |
| Description    | Commercial diet  | Negative control +             | Negative control +           |
|                | Commercial diet  | 1.5 kg/metric ton of probioist | 3 kg/metric ton of probioist |



<sup>3</sup> treatments  $\times$  6 replicates  $\times$  22 birds, 42 days of trail.

Different superscript in the same row means significant differences (P < 0.05).

Table 6. Effect of Probioist on growth performance of white shrimp

| Parameters —     |                         | Experimental di | ets        |            |
|------------------|-------------------------|-----------------|------------|------------|
| r didiffeters =  | Negative Control        | P500            | P1000      | P1500      |
| Survival (%)     | 81.3±4.6ª               | 83.3±8ª         | 86.7±4.4ª  | 80.4±3.6a  |
| Final weight (g) | 5.64±0.49 <sup>b</sup>  | 6.77±0.29a      | 6.85±0.12° | 7.37±0.48ª |
| Weight gain (%)  | 307.5±35.3 <sup>b</sup> | 389.2±21.1°     | 395.3±9ª   | 432.8±35°  |
| Feed efficiency  | $0.61\pm0.04^{a}$       | 0.67±0.04ª      | 0.73±0.04° | 0.67±0.07° |



Figure 2. Effect of Probioist on Vibrio-like counts in the gut of white shrimp

Note: National Pingtung University of Science and Technology.

White shrimp were reared in 12 12-ton cement tanks (6  $\times$  2  $\times$  1.3 m) with 10 tons of 25% saltwater, for 56 days trail. Control diet was prepared without probiotics, with 37% protein and 7% lipid.

Treatment diets were supplemented with 0.5g/kg, 1g/kg and 1.5g/kg of Probioist and were designated as P500, P1000 and P1500, respectively.

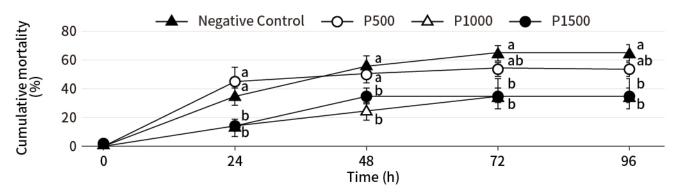



Figure 3. Cumulative mortality of shrimp subsequently orally challenged with *Vibrio* parahaemolyticus after 56 days of feeding trail with Probioist

Note: Each shrimp received 6.5×10<sup>5</sup> cfu pathogen (g shrimp)-1.

# **6.Recommended dosage**

| Species        | Stage           | Dose (g/t)    | Species | Stage             | Dose (g/t) |
|----------------|-----------------|---------------|---------|-------------------|------------|
| Swine          | Weaned          | 500 - 1,200   | Chicken | Starter           | 100 - 300  |
|                | Nursery         | 500 - 1,000   |         | Grower            | 100 - 200  |
| R              | Grower          | 300 - 500     |         | Finisher          | 100 - 200  |
|                | Finisher        | 200 - 400     | -       | Layer             | 100 - 300  |
| Ruminant       | Calf and lamb   | 500 - 1,500   |         | Breeder           | 100 - 300  |
| (Replace CTC,  | Grower-finisher | 1,000         | Duck 🛌  | Meat duck & Layer | 100 - 300  |
| Monensin )     | Lactating cow   | 1,000         |         | Breeder           | 100 - 300  |
|                | Fattening       | 1,000 - 2,000 | Fish    |                   | 250 - 500  |
| Shrimp         | 0#              | 2,000 - 3,000 |         |                   |            |
| ( Prevent EHP, | 1#              | 2,000         |         |                   |            |
| Vibro. spp)    | 2# & 3#         | 1,000         |         |                   |            |





